QOJ.ac

QOJ

Time Limit: 0.5 s Memory Limit: 256 MB Total points: 100

# 11566. Gift for Anton

统计

Anton wants to receive as a gift a rectangular table of size $n\times m$ filled with the numbers 0, 1, 2, 3, or 4.

Anton will be happy if there is no other "0" next to each "0", exactly one other "1" next to each "1", exactly two other "2"s next to each "2", exactly three other "3"s next to each "3", and exactly four other "4"s next to each "4" (i.e., all neighbors of "4" must also be "4").

One cell is considered to be next to another if they share a side.

You need to come up with a table that can be gifted to Anton so that he will be happy.

Below is an example of a table that will make Anton happy with $n=4, m=6$.

problem_11566_1.png

Input

A single line contains two numbers $n, m$ ($1 \leq n, m \leq 200$) --- the dimensions of the table.

It can be shown that a solution always exists.

Output

Output a table with $n$ rows and $m$ columns --- a gift for Anton.

Example

Input

4 6

Output

1 1 2 2 2 1
0 2 2 0 2 1
1 2 0 2 2 0
1 2 2 2 1 1

Scoring

  1. ($10$ points): $n = 1$;
  2. ($10$ points): $n = 2$;
  3. ($10$ points): $n = 3$;
  4. ($10$ points): $n = m = 4$;
  5. ($10$ points): $n = m = 30$;
  6. ($5$ points): $n = 30, m = 31$;
  7. ($5$ points): $n = 30, m = 32$;
  8. ($10$ points): $n = m = 31$;
  9. ($5$ points): $n = 31, m = 32$;
  10. ($10$ points): $n = m = 32$;
  11. ($15$ points): no additional restrictions.

Anton 想收到一张大小为 $n\times m$ 的矩形表格作为礼物,表格中填有数字 0、1、2、3 或 4。

如果满足以下条件,Anton 会很开心:每个 “0” 周围没有其他 “0”;每个 “1” 周围恰好有一个 “1”;每个 “2” 周围恰好有两个 “2”;每个 “3” 周围恰好有三个 “3”;每个 “4” 周围恰好有四个 “4”(也就是说,所有与 “4” 相邻的格子也都必须是 “4”)。

如果两个格子共享一条边,则认为它们是相邻的。

你需要设计一个表格作为礼物送给 Anton,使得他会感到开心。

下面是一个在 $n=4, m=6$ 时能让 Anton 开心的表格示例。

problem_11566_1.png

输入

一行包含两个整数 $n, m$ ($1 \leq n, m \leq 200$) --- 表格的尺寸。

可以证明,总是存在一种可行解。

输出

输出一个 $n$ 行 $m$ 列的表格 --- 作为送给 Anton 的礼物。

示例

输入

4 6

输出

1 1 2 2 2 1
0 2 2 0 2 1
1 2 0 2 2 0
1 2 2 2 1 1

评分

  1. ($10$ 分):$n = 1$;
  2. ($10$ 分):$n = 2$;
  3. ($10$ 分):$n = 3$;
  4. ($10$ 分):$n = m = 4$;
  5. ($10$ 分):$n = m = 30$;
  6. ($5$ 分):$n = 30, m = 31$;
  7. ($5$ 分):$n = 30, m = 32$;
  8. ($10$ 分):$n = m = 31$;
  9. ($5$ 分):$n = 31, m = 32$;
  10. ($10$ 分):$n = m = 32$;
  11. ($15$ 分):无额外限制。