QOJ.ac

QOJ

Time Limit: 3.5 s Memory Limit: 512 MB Total points: 100

#849. 瘟疫公司

Statistics

世界是一个由 $n$ 个城市,$m$ 条交通路线组成的联通图。每条交通路线有一个权值。定义一个联通子图的权值 $w(s)$ 是子图的最小生成树权值和与最大生成树权值和的异或和。

注意:

  • $w(s)$ 仅对图 $G$ 的联通子图 $(s,E_s)$ 才有定义;
  • 联通子图 $(s,E_s)$,其中点集为 $s$,边集 $E_s = \{(u,v)\in s\}$ 为所有两端点都属于 $s$ 的边的集合,联通即满足 $s$ 中的任意两点可以被若干 $E_s$ 中的边所联通

你最初可以任选一个城市开始发展。假设你目前感染的城市点集是 $S$,下一步扩张的点集是 $T$(只需保证 $S \subset T$,且 $T$ 联通),那么称这一步的 DNA 点数消耗是 $(|T| − |S |)\times w(T)$。

请找到一条感染计划,即一个点集序列 $S_1 \subset S_2 \subset... \subset S_k$,其中 $S_1$ 只包含一个城市,$S_k$ 包含所有城市,每一步都要保证集合是联通的,最小化扩张的总 DNA 点数消耗。

输入格式

第一行两个正整数 $n, m$,表示城市数量和道路数量。

接下来 $m$ 行,每行 3 个正整数 $u,v,w$,表示一条交通路线。

输出格式

输出一行一个正整数,为最小 DNA 代价。

样例数据

样例 1 输入

3 3
1 2 1
2 3 2
1 3 3

样例 1 输出

6

样例 2

见下发文件

样例 3

见下发文件

子任务

对于 100% 的数据,$1\le n \le 20, 1\le m \le 100,1\le w \le 10000$,保证图连通

子任务1(20pts):$n\le 3, m\le 10$

子任务2(10pts):$n\le 4, m\le 10$

子任务3(10pts):$n\le 5, m\le 10$

子任务4(20pts):$n\le 10, m\le 100$

子任务5(20pts):$n\le 16, m\le 100$

子任务6(20pts):$n\le 20, m\le 100$

Discussions

About Discussions

The discussion section is only for posting: Editorials, General Discussions (problem-solving strategies, alternative approaches), and Off-topic conversations.

This is NOT for reporting issues! If you want to report bugs or errors, please use the Issues section below.

Open Discussions 0
No discussions in this category.

Issues

About Issues

If you find any issues with the problem (statement, scoring, time/memory limits, test cases, etc.), you may submit an issue here. A problem moderator will review your issue.

Guidelines:

  1. This is not a place to publish discussions, editorials, or requests to debug your code. Issues are only visible to you and problem moderators.
  2. Do not submit duplicated issues. Submitting multiple issues may cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
Active Issues 0
No issues in this category.
Closed/Resolved Issues 0
No issues in this category.