QOJ.ac

QOJ

Time Limit: 1 s Memory Limit: 512 MB Total points: 100

#7962. 前缀和

Statistics

题目描述

小兰很喜欢随机数。

TA 首先选定了一个实数 $0 < p < 1$,然后生成了 $n$ 个随机数 $x_1,\dots,x_n$,每个数是独立按照如下方式生成的:

  • $x_i$ 有 $p$ 的概率是 $1$,有 $(1-p)p$ 的概率是 $2$,有 $(1-p)^2p$ 的概率是 $3$,以此类推。

生成完这些随机数之后,小艾对这个数列求了前缀和,得到了数列 $y_1,\dots,y_n$。

给定 $1\leq l\leq r\leq n$,小兰想知道,期望有多少 $y_i$ 落在 $[l, r]$ 内?

输入格式

从标准输入读入数据。

一行输入四个数 $n, p, l, r$。保证 $1\leq l\leq r\leq n\leq 10^9$,$p$ 的位数不超过 $6$。

输出格式

输出到标准输出。

输出一个实数,表示答案。你需要保证答案的绝对或相对误差不超过 $10^{-6}$。

样例1输入

3 0.5 1 2

样例1输出

1.000000

样例1解释

有 $1/4$ 的概率,$x_1=1$ 而 $x_2>1$,此时只有 $y_1$ 落在 $[1, 2]$ 内。

有 $1/4$ 的概率,$x_1=1$ 且 $x_2=1$,此时 $y_1,y_2$ 落在 $[1, 2]$ 内。

有 $1/4$ 的概率,$x_1=2$,此时只有 $y_1$ 落在 $[1, 2]$ 内。

所以期望是 $1/4\cdot (1 + 2 + 1) = 1$。

Discussions

About Discussions

The discussion section is only for posting: Editorials, General Discussions (problem-solving strategies, alternative approaches), and Off-topic conversations.

This is NOT for reporting issues! If you want to report bugs or errors, please use the Issues section below.

Open Discussions 0
No discussions in this category.

Issues

About Issues

If you find any issues with the problem (statement, scoring, time/memory limits, test cases, etc.), you may submit an issue here. A problem moderator will review your issue.

Guidelines:

  1. This is not a place to publish discussions, editorials, or requests to debug your code. Issues are only visible to you and problem moderators.
  2. Do not submit duplicated issues. Submitting multiple issues may cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
Active Issues 0
No issues in this category.
Closed/Resolved Issues 0
No issues in this category.