QOJ.ac

QOJ

Time Limit: 2 s Memory Limit: 1024 MB Total points: 100 Difficulty: [show] Hackable ✓

#61. Cut Cut Cut!

統計

给定一张 $n$ 个点 $m$ 条边的有向无环图 $G=(V,E)$. 第 $i$ 条边连接顶点 $u_i$ 与 $v_i$. 保证 $1$ 号点的出度不超过 $20$.

对每个 $2 \leq i \leq n$, 你想要知道你需要最少删除多少条边, 才能使得不能存在任何一条从 $1$ 到 $i$ 的路径, 使得这条路径不经过任何你删除的边.

输入格式

输入的第一行包含两个整数 $n,m$ ($1 \leq n \leq 10^5, 1 \leq m \leq 3 \times 10^5$), 表示顶点的数量和边的数量.

接下来 $m$ 行描述图 $G$:

  • 其中第 $i$ 行包含两个整数 $u_i, v_i$ ($1 \leq u_i \mathbf{<} v_i \leq n$), 描述一条连接顶点 $u_i$ 与 $v_i$ 的边.

保证图中不含有重边, 且以 $1$ 号点为起点的边的数量不超过 $20$ 条.

输出格式

输出一行, 包含 $n-1$ 个整数, 其中第 $i$ 个整数描述你最少需要删除多少条边.

样例数据

样例 1 输入

3 3
1 2
1 3
2 3

样例 1 输出

1 2

样例 1 解释

对于 $i = 2$, 最优的方案是删除边 $(1, 2)$.

对于 $i = 3$, 最优的方案是删除边 $(1, 2)$ 和 $(1, 3)$.

样例 2 输入

8 8
1 2
1 3
1 5
2 4
2 5
3 6
4 5
7 8

样例 2 输出

1 1 1 2 1 0 0

样例 3

你可以在附加文件中找到该样例.

样例 4

你可以在附加文件中找到该样例.

Discussions

About Discussions

The discussion section is only for posting: Editorials, General Discussions (problem-solving strategies, alternative approaches), and Off-topic conversations.

This is NOT for reporting issues! If you want to report bugs or errors, please use the Issues section below.

Open Discussions 0
No discussions in this category.

Issues

About Issues

If you find any issues with the problem (statement, scoring, time/memory limits, test cases, etc.), you may submit an issue here. A problem moderator will review your issue.

Guidelines:

  1. This is not a place to publish discussions, editorials, or requests to debug your code. Issues are only visible to you and problem moderators.
  2. Do not submit duplicated issues. Submitting multiple issues may cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
Active Issues 0
No issues in this category.
Closed/Resolved Issues 0
No issues in this category.