QOJ.ac

QOJ

Time Limit: 1 s Memory Limit: 512 MB Total points: 100 Hackable ✓

#5034. >.<

الإحصائيات

Note. 「$k$ 条路径」不一定在图中。

题目描述

有一张 $n$ 个点,$m$ 条边的带权有向图(无重边、自环),再给定 $k$ 条路径,求一条 $1$ 到 $n$ 的最短路径(不要求是简单路径),使得这条路径不包含给定 $k$ 条路径中的任何一条(包含指连续地经过某条路径)。输出此路径的长度,如果找不到输出 $-1$。

输入格式

第一行输入三个整数 $n, m, k$,表示图的点数、边数和钦定路径条数。 接下来 $m$ 行,每行三个整数 $u_i, v_i, w_i$ 表示有一条从 $u_i$ 到 $v_i$,边权为 $w_i$ 的有向边。 接下来 $k$ 行,每行先输入一个整数 $p$,表示这条给定路径的长度,后面有 $p$ 个整数,描述了这条给定的路径。

输出格式

输出一行一个整数表示从 $1$ 到 $n$ 不经过给定路径的最短长度。如果不存在输出 $-1$。

样例一

input

7 8 2
1 2 1
2 3 2
3 4 1
4 5 1
4 6 1
5 7 1
6 7 1
6 5 2
6 1 2 3 4 5 7
5 2 3 4 6 7

output

8

样例二

input

4 4 2
1 2 1
2 3 1
3 4 1
3 2 1
4 1 2 3 4
6 1 2 3 2 3 4

output

7

子任务

以下的路径长度均指一条路径经过的点个数(重复点算多次)。

  • Subtask1($\text{20 pts}$):$n, m \le 100, k = 0$;
  • Subtask2($\text{20 pts}$):$n, m \le 100$,每条给定路径长度不超过 $4$;
  • Subtask3($\text{30 pts}$):$n, m \le 2 \times 10^5, k = 1$;
  • Subtask4($\text{30 pts}$):$n, m, k \le 2 \times 10^5$。

对于所有数据,有 $1 \le n, m \le 2 \times 10^5, 0 \le k \le 2 \times 10^5, 1 \le u_i, v_i \le n, 0 \le w_i \le 10^9$,路径长度总和小于等于 $2 \times 10^5$。

Discussions

About Discussions

The discussion section is only for posting: Editorials, General Discussions (problem-solving strategies, alternative approaches), and Off-topic conversations.

This is NOT for reporting issues! If you want to report bugs or errors, please use the Issues section below.

Open Discussions 0
No discussions in this category.

Issues

About Issues

If you find any issues with the problem (statement, scoring, time/memory limits, test cases, etc.), you may submit an issue here. A problem moderator will review your issue.

Guidelines:

  1. This is not a place to publish discussions, editorials, or requests to debug your code. Issues are only visible to you and problem moderators.
  2. Do not submit duplicated issues. Submitting multiple issues may cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
Active Issues 0
No issues in this category.
Closed/Resolved Issues 0
No issues in this category.