QOJ.ac

QOJ

Time Limit: 3 s Memory Limit: 256 MB Total points: 100 Hackable ✓

#4259. 胡策的统计

الإحصائيات

在 OI 界,有一位无人不知无人不晓,OI 水平前无古人后无来者的胡策,江湖人称一眼秒题胡大爷!

今天胡策在研究无向图的连通性。对于一个无向图定义它的连通值为该图连通块数的阶乘。

为了研究连通值的性质,胡策随手画了一个 $n$ 个结点的简单无向图 $G$,结点分别编号为 $1, \dots, n$,他想统计出 $G$ 的所有生成子图的连通值之和。

胡策当然会做啦!但是他想考考你。你只用输出结果对 $998244353$ ($7 \times 17 \times 2^{23} + 1$,一个质数) 取模后的结果。

简单无向图即无重边无自环的无向图。生成子图即原图中删去若干条边(可以是 $0$ 条)后形成的图。

输入格式

第一行两个整数 $n, m$,表示 $G$ 的结点数和边数。保证 $n \geq 1,m \geq 0$。

接下来 $m$ 行,每行两个整数 $v, u$,表示 $v$ 号结点和 $u$ 号结点之间有一条无向边。保证 $1 \leq v, u \leq n$,保证没有重边和自环。

输出格式

一行,一个整数表示答案。

样例一

input

6 13
1 2
1 3
2 3
1 4
4 2
3 4
5 2
3 5
5 4
6 2
6 3
6 4
6 5


output

16974


样例二

见样例数据下载。

限制与约定

测试点编号 $n$ 特殊限制
1$\leq 6$
2$\leq 10$
3
4$\leq 17$
5
6
7$\leq 20$$G$ 为完全图
8
9
10

时间限制:$3\texttt{s}$

空间限制:$256\texttt{MB}$

来源

中国国家集训队互测2015 - By 吕凯风

Discussions

About Discussions

The discussion section is only for posting: Editorials, General Discussions (problem-solving strategies, alternative approaches), and Off-topic conversations.

This is NOT for reporting issues! If you want to report bugs or errors, please use the Issues section below.

Open Discussions 0
No discussions in this category.

Issues

About Issues

If you find any issues with the problem (statement, scoring, time/memory limits, test cases, etc.), you may submit an issue here. A problem moderator will review your issue.

Guidelines:

  1. This is not a place to publish discussions, editorials, or requests to debug your code. Issues are only visible to you and problem moderators.
  2. Do not submit duplicated issues. Submitting multiple issues may cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
Active Issues 0
No issues in this category.
Closed/Resolved Issues 0
No issues in this category.