QOJ.ac

QOJ

Time Limit: 2 s Memory Limit: 1024 MB Total points: 100

#3766. 抄板子

统计

Bobo 有一个 $(n - 1)$ 次多项式 $f(x) = \sum_{i = 0}^{n - 1} a_i x^i$ 和一个质数 $p$, 还有一个整数 $w$. 他想求出 $f(w^0), f(w^1), \dots, f(w^{n - 1})$ 除以 $p$ 的余数.

输入格式

输入文件包含多组数据,请处理到文件结束。

每组数据的第一行包含 $3$ 个整数 $n$, $p$ 和 $w$. 第二行包含 $n$ 个整数 $a_0, \dots, a_{n - 1}$.

  • $3 \leq n \leq 2 \times 10^5$
  • 存在一个非负整数 $k$ 使得 $n = 3 \times 2^k$.
  • $2 \leq p \leq 10^9$, $p$ 是质数
  • $n$ 是 $(p - 1)$ 的约数
  • $1 \leq w < p$
  • $w^n \bmod p = 1$
  • $0 \leq a_i < p$
  • $n$ 的和不超过 $5 \times 10^5$.

输出格式

对于每组数据,输出 $n$ 个整数,表示 $f(w^0), f(w^1), \dots, f(w^{n - 1})$ 除以 $p$ 的余数.

样例输入

3 7 1
1 2 3
3 7 2
1 2 3
6 458719 458718
91633 324072 357282 141401 443440 75350

样例输出

6 6 6
6 3 1
57021 351532 57021 351532 57021 351532

Discussions

About Discussions

The discussion section is only for posting: Editorials, General Discussions (problem-solving strategies, alternative approaches), and Off-topic conversations.

This is NOT for reporting issues! If you want to report bugs or errors, please use the Issues section below.

Open Discussions 0
No discussions in this category.

Issues

About Issues

If you find any issues with the problem (statement, scoring, time/memory limits, test cases, etc.), you may submit an issue here. A problem moderator will review your issue.

Guidelines:

  1. This is not a place to publish discussions, editorials, or requests to debug your code. Issues are only visible to you and problem moderators.
  2. Do not submit duplicated issues. Submitting multiple issues may cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
Active Issues 0
No issues in this category.
Closed/Resolved Issues 0
No issues in this category.