QOJ.ac

QOJ

Time Limit: 1 s Memory Limit: 1024 MB Total points: 100

#3736. Tree Intersection

統計

Bobo has a tree with $n$ vertices numbered by $1, 2, \dots, n$ and $(n - 1)$ edges. The $i$-th vertex has color $c_i$, and the $i$-th edge connects vertices $a_i$ and $b_i$.

Let $C(x, y)$ denotes the set of colors in subtree rooted at vertex $x$ deleting edge $(x, y)$.

Bobo would like to know $R_i$ which is the size of intersection of $C(a_i, b_i)$ and $C(b_i, a_i)$ for all $1 \leq i \leq (n - 1)$. (i.e. $|C(a_i, b_i) \cap C(b_i, a_i)|$)

Input

The input contains at most 15 sets. For each set:

The first line contains an integer $n$ ($2 \leq n \leq 10^5$).

The second line contains $n$ integers $c_1, c_2, \dots, c_n$ ($1 \leq c_i \leq n$).

The $i$-th of the last $(n - 1)$ lines contains $2$ integers $a_i, b_i$ ($1 \leq a_i, b_i \leq n$).

Output

For each set, $(n - 1)$ integers $R_1, R_2, \dots, R_{n - 1}$.

Sample Input

4
1 2 2 1
1 2
2 3
3 4
5
1 1 2 1 2
1 3
2 3
3 5
4 5

Sample Output

1
2
1
1
1
2
1

Discussions

About Discussions

The discussion section is only for posting: Editorials, General Discussions (problem-solving strategies, alternative approaches), and Off-topic conversations.

This is NOT for reporting issues! If you want to report bugs or errors, please use the Issues section below.

Open Discussions 0
No discussions in this category.

Issues

About Issues

If you find any issues with the problem (statement, scoring, time/memory limits, test cases, etc.), you may submit an issue here. A problem moderator will review your issue.

Guidelines:

  1. This is not a place to publish discussions, editorials, or requests to debug your code. Issues are only visible to you and problem moderators.
  2. Do not submit duplicated issues. Submitting multiple issues may cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
Active Issues 0
No issues in this category.
Closed/Resolved Issues 0
No issues in this category.