QOJ.ac

QOJ

Time Limit: 2 s Memory Limit: 1024 MB Total points: 100

#3006. Heaps of Fun

الإحصائيات

Problem Description

Consider a rooted tree with $n$ nodes, numbered $1 \cdots n$. Each node will have a fixed integer $b$, and for each, a uniform random real number is chosen in the interval $[0, b]$.

What is the probability that the random numbers chosen cause the tree to form a Heap (i.e., the random value in each node is less than the random values in its children)?

This probability can always be expressed as a rational number $\frac{P}{Q}$, with $Q \not\equiv 0 \pmod {(10^9+7)}$. You are to output the probability as $P \times Q^{-1} \bmod{(10^9+7)}$, where $Q^{-1}$ is an integer, which is the multiplicative inverse of $Q$ modulo $10^9+7$ ($Q \times Q^{-1} \equiv 1 \pmod{10^9+7}$). (Note: $P \times Q \bmod {(10^9+7)}$ does not depend on whether $P$ and $Q$ are relatively prime, only on their ratio $\frac{P}{Q}$.)

Input

Each test case will begin with a line with a single integer $n$ ($1 \leq n \leq 300$), which is the number of nodes in the tree.

Each of the next $n$ lines will contain a pair of space-separated integers $b$ ($1 \leq b \leq 10^9$) and $p$($0 \leq p\leq n$) describing a node of the tree, where $b$ is the fixed integer value in the node and $p$ is the node number of its parent. The nodes are listed in order; node $1$ is first, then node $2$, and so on. A single node will have a parent $p=0$. This is the root of the tree.

Output

Output a single integer, which is the probability expressed as $P \times Q^{-1} \bmod{(10^9+7)}$.

Samples

Sample Input 1

2
1000000000 0
1000000000 1

Sample Output 1

500000004

Sample Input 2

5
2 3
2 3
1 0
2 3
2 3

Sample Output 2

87500001

Discussions

About Discussions

The discussion section is only for posting: Editorials, General Discussions (problem-solving strategies, alternative approaches), and Off-topic conversations.

This is NOT for reporting issues! If you want to report bugs or errors, please use the Issues section below.

Open Discussions 0
No discussions in this category.

Issues

About Issues

If you find any issues with the problem (statement, scoring, time/memory limits, test cases, etc.), you may submit an issue here. A problem moderator will review your issue.

Guidelines:

  1. This is not a place to publish discussions, editorials, or requests to debug your code. Issues are only visible to you and problem moderators.
  2. Do not submit duplicated issues. Submitting multiple issues may cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
Active Issues 0
No issues in this category.
Closed/Resolved Issues 0
No issues in this category.