QOJ.ac

QOJ

Time Limit: 1 s Memory Limit: 256 MB Total points: 100

#2028. Sum of Distances

الإحصائيات

Bessie has a collection of connected, undirected graphs $G_1,G_2,\ldots,G_K$ ($2\le K\le 5\cdot 10^4$). For each $1\le i\le K$, $G_i$ has exactly $N_i$ ($N_i\ge 2$) vertices labeled $1\ldots N_i$ and $M_i$ ($M_i\ge N_i-1$) edges. Each $G_i$ may contain self-loops, but not multiple edges between the same pair of vertices.

Now Elsie creates a new undirected graph $G$ with $N_1\cdot N_2\cdots N_K$ vertices, each labeled by a $K$-tuple $(j_1,j_2,\ldots,j_K)$ where $1\le j_i\le N_i$. In $G$, two vertices $(j_1,j_2,\ldots,j_K)$ and $(k_1,k_2,\ldots,k_K)$ are connected by an edge if for all $1\le i\le K$, $j_i$ and $k_i$ are connected by an edge in $G_i$.

Define the distance between two vertices in $G$ that lie in the same connected component to be the minimum number of edges along a path from one vertex to the other. Compute the sum of the distances between vertex $(1,1,\ldots,1)$ and every vertex in the same component as it in $G$, modulo $10^9+7$.

INPUT FORMAT (input arrives from the terminal / stdin):

The first line contains $K$, the number of graphs.

Each graph description starts with $N_i$ and $M_i$ on a single line, followed by $M_i$ edges.

Consecutive graphs are separated by newlines for readability. It is guaranteed that $\sum N_i\le 10^5$ and $\sum M_i\le 2\cdot 10^5$.

OUTPUT FORMAT (print output to the terminal / stdout):

The sum of the distances between vertex $(1,1,\ldots,1)$ and every vertex that is reachable from it, modulo $10^9+7$.

SAMPLE INPUT:

2

2 1
1 2

4 4
1 2
2 3
3 4
4 1

SAMPLE OUTPUT:

4
$G$ contains $2\cdot 4=8$ vertices, $4$ of which are not connected to vertex $(1,1)$. There are $2$ vertices that are distance $1$ away from $(1,1)$ and $1$ that is distance $2$ away. So the answer is $2\cdot 1+1\cdot 2=4$.

SAMPLE INPUT:

3

4 4
1 2
2 3
3 1
3 4

6 5
1 2
2 3
3 4
4 5
5 6

7 7
1 2
2 3
3 4
4 5
5 6
6 7
7 1

SAMPLE OUTPUT:

706
$G$ contains $4\cdot 6\cdot 7=168$ vertices, all of which are connected to vertex $(1,1,1)$. The number of vertices that are distance $i$ away from $(1,1,1)$ for each $i\in [1,7]$ is given by the $i$-th element of the following array: $[4,23,28,36,40,24,12]$.

SCORING:

  • Test cases 3-4 satisfy $\prod N_i\le 300$.
  • Test cases 5-10 satisfy $\sum N_i\le 300$.
  • Test cases 11-20 satisfy no additional constraints.

Problem credits: Benjamin Qi

Discussions

About Discussions

The discussion section is only for posting: Editorials, General Discussions (problem-solving strategies, alternative approaches), and Off-topic conversations.

This is NOT for reporting issues! If you want to report bugs or errors, please use the Issues section below.

Open Discussions 0
No discussions in this category.

Issues

About Issues

If you find any issues with the problem (statement, scoring, time/memory limits, test cases, etc.), you may submit an issue here. A problem moderator will review your issue.

Guidelines:

  1. This is not a place to publish discussions, editorials, or requests to debug your code. Issues are only visible to you and problem moderators.
  2. Do not submit duplicated issues. Submitting multiple issues may cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
Active Issues 0
No issues in this category.
Closed/Resolved Issues 0
No issues in this category.