QOJ.ac

QOJ

Time Limit: 1 s Memory Limit: 256 MB Total points: 100

#2026. Minimizing Edges

統計

Bessie has a connected, undirected graph $G$ with $N$ vertices labeled $1\ldots N$ and $M$ edges ($2\le N\le 10^5, N-1\le M\le \frac{N^2+N}{2}$). $G$ may contain self-loops (edges from nodes back to themselves), but no parallel edges (multiple edges connecting the same endpoints).

Let $f_G(a,b)$ be a boolean function that evaluates to true if there exists a path from vertex $1$ to vertex $a$ that traverses exactly $b$ edges for each $1\le a\le N$ and $0\le b$, and false otherwise. If an edge is traversed multiple times, it is included that many times in the count.

Elsie wants to copy Bessie. In particular, she wants to construct an undirected graph $G'$ such that $f_{G'}(a,b)=f_G(a,b)$ for all $a$ and $b$.

Elsie wants to do the least possible amount of work, so she wants to construct the smallest possible graph. Therefore, your job is to compute the minimum possible number of edges in $G'$.

Each input contains $T$ ($1\le T\le 5\cdot 10^4$) test cases that should be solved independently. It is guaranteed that the sum of $N$ over all test cases does not exceed $10^5$, and the sum of $M$ over all test cases does not exceed $2\cdot 10^5$.

INPUT FORMAT (input arrives from the terminal / stdin):

The first line of the input contains $T$, the number of test cases.

The first line of each test case contains two integers $N$ and $M$.

The next $M$ lines of each test case each contain two integers $x$ and $y$ ($1\le x\le y\le N$), denoting that there exists an edge between $x$ and $y$ in $G$.

Consecutive test cases are separated by newlines for readability.

OUTPUT FORMAT (print output to the terminal / stdout):

For each test case, the minimum possible number of edges in $G'$ on a new line.

SAMPLE INPUT:

2

5 5
1 2
2 3
2 5
1 4
4 5

5 5
1 2
2 3
3 4
4 5
1 5

SAMPLE OUTPUT:

4
5
In the first test case, Elsie can construct $G'$ by starting with $G$ and removing $(2,5)$. Or she could construct a graph with the following edges, since she isn't restricted to just removing edges from $G$:
1 2
1 4
4 3
4 5
Elsie definitely cannot do better than $N-1$ since $G'$ must also be connected.

SAMPLE INPUT:

7

8 10
1 2
1 3
1 4
1 5
2 6
3 7
4 8
5 8
6 7
8 8

10 11
1 2
1 5
1 6
2 3
3 4
4 5
4 10
6 7
7 8
8 9
9 9

13 15
1 2
1 5
1 6
2 3
3 4
4 5
6 7
7 8
7 11
8 9
9 10
10 11
11 12
11 13
12 13

16 18
1 2
1 7
1 8
2 3
3 4
4 5
5 6
6 7
8 9
9 10
9 15
9 16
10 11
11 12
12 13
13 14
14 15
14 16

21 22
1 2
1 9
1 12
2 3
3 4
4 5
5 6
6 7
7 8
7 11
8 9
8 10
12 13
13 14
13 21
14 15
15 16
16 17
17 18
18 19
19 20
20 21

20 26
1 2
1 5
1 6
2 3
3 4
4 5
4 7
6 8
8 9
8 11
8 12
8 13
8 14
8 15
8 16
8 17
9 10
10 18
11 18
12 19
13 20
14 20
15 20
16 20
17 20
19 20

24 31
1 2
1 7
1 8
2 3
3 4
4 5
5 6
6 7
6 9
8 10
10 11
10 16
10 17
10 18
10 19
10 20
11 12
12 13
13 14
14 15
15 16
15 17
15 18
15 19
15 20
15 21
15 22
15 23
15 24
21 22
23 24

SAMPLE OUTPUT:

10
11
15
18
22
26
31
In each of these test cases, Elsie cannot do better than Bessie.

SCORING:

  • All test cases in input 3 satisfy $N\le 5$.
  • All test cases in inputs 4-5 satisfy $M=N$.
  • For all test cases in inputs 6-9, if it is not the case that $f_G(x,b)=f_G(y,b)$ for all $b$, then there exists $b$ such that $f_G(x,b)$ is true and $f_G(y,b)$ is false.
  • All test cases in inputs 10-15 satisfy $N\le 10^2$.
  • Test cases in inputs 16-20 satisfy no additional constraints.

Problem credits: Benjamin Qi

Discussions

About Discussions

The discussion section is only for posting: Editorials, General Discussions (problem-solving strategies, alternative approaches), and Off-topic conversations.

This is NOT for reporting issues! If you want to report bugs or errors, please use the Issues section below.

Open Discussions 0
No discussions in this category.

Issues

About Issues

If you find any issues with the problem (statement, scoring, time/memory limits, test cases, etc.), you may submit an issue here. A problem moderator will review your issue.

Guidelines:

  1. This is not a place to publish discussions, editorials, or requests to debug your code. Issues are only visible to you and problem moderators.
  2. Do not submit duplicated issues. Submitting multiple issues may cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
Active Issues 0
No issues in this category.
Closed/Resolved Issues 0
No issues in this category.