QOJ.ac

QOJ

Time Limit: 2 s Memory Limit: 512 MB Total points: 100 Difficulty: [show]

#1839. Joke

統計

题解 by @ezoilearner,你可以通过以下联系方式联系作者:

  • QQ: 2939863838

题意:我们称三运组 $(p,q,s)$ 合法当且仅当村存在矩阵 $a_{2\times n}$:

0 $p,q$ 是个 长为 $n$ 的排列,$s$ 是一个长为 $n$ 的 $01$ 字符串。

1 $1-2*n$ 的整数在里面恰好出现一次;

2 $\forall i,j,[a_{1,i} < a_{1,j}]=[p_i < p_j]$ .

3 $\forall i,j,[a_{2,i} < a_{2,j}]=[q_i < q_j]$ .

4 $\forall i,a_{1,i} < a_{2,i}=[s_i=0]$ .

$f(p,q)$ 定义为满足条件的 $s$ 的个数。

给定 $p$ ,给定 $q$ 的若干位置,求对于所有满足条件的 $q$ ,$f(p,q)$ 的和。

$n\leq 100$

题解:可以认为 $\{p\}={1,2,\cdots,N}$ .

这样情况下,不能存在 $i>j,q_i < q_j,s_i=0,s_j=1$ ,其实这也是充分条件。

进而考虑 $f(p,q)$ 的计算,其实就是 $\{q\}$ 的上升子序列的个数。

很容易想到 $O(N^4)$ 的naive dp.

采用点值优化,其实就是要求

$F_{n,m}=\sum_{k\geq0}\binom{n}{k}\binom{m}{k}c^k$ .对于每种 $c$ ,有$F_{0\leq n\leq N,0\leq m\leq N}$ 有待解决($n$和$N$在这里不一样,$N$ 指的是原题中的 $n$) .

$$ \sum_{i,j\geq 0}F_{i,j}u^iv^j=\sum_{k\geq 0}\frac{u^k}{(1-u)^{k+1}}\frac{v^k}{(1-v)^{k+1}}c^k=\frac{1}{1-u-v-(c-1)uv}\\ F_{i,j}=F_{i-1,j}+F_{i,j-1}+(c-1)F_{i-1,j-1}\\ $$

时间复杂度 $O(N^3)$ .

Discussions

About Discussions

The discussion section is only for posting: Editorials, General Discussions (problem-solving strategies, alternative approaches), and Off-topic conversations.

This is NOT for reporting issues! If you want to report bugs or errors, please use the Issues section below.

Open Discussions 0
No discussions in this category.

Issues

About Issues

If you find any issues with the problem (statement, scoring, time/memory limits, test cases, etc.), you may submit an issue here. A problem moderator will review your issue.

Guidelines:

  1. This is not a place to publish discussions, editorials, or requests to debug your code. Issues are only visible to you and problem moderators.
  2. Do not submit duplicated issues. Submitting multiple issues may cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
Active Issues 0
No issues in this category.
Closed/Resolved Issues 0
No issues in this category.