QOJ.ac

QOJ

Time Limit: 5 s Memory Limit: 512 MB Total points: 100 Hackable ✓
统计

Source: Library Checker

Statement

Given a simple weighted undirected graph with $N$ vertices and $M$ edges. $i$-th edge is $(u_i, v_i)$ with a weight $w_i$. Calculate the matching in which the sum of weights is maximized.

$N$ 頂点 $M$ 辺からなる単純重み付き無向グラフが与えられます。$i$ 番目の辺は $(u_i, v_i)$ を結ぶ重み $w_i$ の辺です。 重みの総和が最大であるようなマッチングをひとつ求めてください。

Constraint

  • $1 \leq N \leq 500$
  • $0 \leq M \leq \frac{N(N-1)}{2}$
  • $0 \leq u_i, v_i < N$
  • $1 \leq w_i \leq 1\,000\,000$

Input

  • $N$ $M$
  • $u_0$ $v_0$ $w_0$
  • $u_1$ $v_1$ $w_1$
  • :
  • $u_{M - 1}$ $v_{M - 1}$ $w_{M-1}$

Output

  • $X$ $W$
  • $a_0$ $b_0$
  • $a_1$ $b_1$
  • :
  • $a_{X - 1}$ $b_{X - 1}$

$X$ is the size of the maximum matching. $W$ is the maximum matching weight. $(a_i, b_i)$ is the edge of the matching.

$X$ はマッチングの辺の個数、$W$ はマッチングの重みの総和、$(a_i, b_i)$ はマッチングの辺です。

Example

Input 1

7 8
2 0 1
0 5 2
5 6 3
6 1 4
1 0 5
1 3 6
3 4 7
1 4 8

Output 1

3 15
0 1
3 4
5 6

Input 2

4 3
0 2 1
1 3 1
1 2 3

Output 2

1 3
1 2

Discussions

About Discussions

The discussion section is only for posting: Editorials, General Discussions (problem-solving strategies, alternative approaches), and Off-topic conversations.

This is NOT for reporting issues! If you want to report bugs or errors, please use the Issues section below.

Open Discussions 0
No discussions in this category.

Issues

About Issues

If you find any issues with the problem (statement, scoring, time/memory limits, test cases, etc.), you may submit an issue here. A problem moderator will review your issue.

Guidelines:

  1. This is not a place to publish discussions, editorials, or requests to debug your code. Issues are only visible to you and problem moderators.
  2. Do not submit duplicated issues. Submitting multiple issues may cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
Active Issues 0
No issues in this category.
Closed/Resolved Issues 0
No issues in this category.