QOJ.ac

QOJ

Top Rated Accepted

#200: ucup-team3862

Accepted: : 211

#200: Wu_Ren

Accepted: : 211

#203: xlwang

Accepted: : 209

#204: ucup-team123

Accepted: : 207

#204: yyyyxh

Accepted: : 207
What is OI (O_o)?

#206: do_while_true

Accepted: : 204

#206: JiZhuan

Accepted: : 204

#206: ucup-team1565

Accepted: : 204

#209: new_dawn_2

Accepted: : 203

#209: ucup-team3634

Accepted: : 203

#211: ucup-team3953

Accepted: : 202

#212: Farmer_D

Accepted: : 201

#212: ucup-team1055

Accepted: : 201

#214: ucup-team1617

Accepted: : 200

#215: houzhiyuan

Accepted: : 199

#215: ucup-team1126

Accepted: : 199

#215: ucup-team3099

Accepted: : 199

#218: Nova_NightWind0311

Accepted: : 198

#218: ucup-team1002

Accepted: : 198

#218: ucup-team3188

Accepted: : 198

#221: dxbt

Accepted: : 197

#221: HuTao

Accepted: : 197

#223: qwq

Accepted: : 196
$\displaystyle \sum_{i=1}^n [i,i+1,\cdots, i+k] \pmod{10^9+7}$

#223: ucup-team029

Accepted: : 196

#223: ucup-team3966

Accepted: : 196
$$\underline{洹}我\underline{达}美\underline{乐}$$

#226: repoman

Accepted: : 195
$$\prod_{i=0}^{n-1} (1+q^iz) = \sum_{i=0}^n q^{i(i-1)/2}\binom ni_q z^i$$

#227: ucup-team1191

Accepted: : 193

#227: ucup-team5071

Accepted: : 193

#229: _map_

Accepted: : 192
map<problem_statement,vector<pair<oj,problem_id>>>

#230: nhuang685

Accepted: : 191

#230: ucup-team635

Accepted: : 191

#232: ucup-team4767

Accepted: : 190

#233: myee

Accepted: : 189
与其诺诺以顺,不若谔谔以昌

#234: ucup-team026

Accepted: : 187

#234: ucup-team1766

Accepted: : 187

#234: ucup-team2819

Accepted: : 187

#237: DitaMirika

Accepted: : 186
Face the fear,make the future.

#237: ucup-team1001

Accepted: : 186
utopian

#239: feecle6418

Accepted: : 181
gyh ak ioi

#239: wsc2008

Accepted: : 181

#241: mendicillin2

Accepted: : 180

#241: monstersqwq

Accepted: : 180

#241: ucup-team3583

Accepted: : 180

#241: ucup-team5101

Accepted: : 180

#245: arnold518

Accepted: : 177

#245: ucup-team2262

Accepted: : 177

#247: Flamire

Accepted: : 176

#247: shinonome_ena

Accepted: : 176

#247: ucup-team1376

Accepted: : 176
CJOIers?

#247: ucup-team2454

Accepted: : 176

#247: ucup-team3474

Accepted: : 176

#252: zhangboju

Accepted: : 175
短暂登上首页并即将掉下来

#253: masterhuang

Accepted: : 174

#253: ucup-team5243

Accepted: : 174

#255: A_programmer

Accepted: : 173

#255: JWRuixi

Accepted: : 173

#255: ucup-team5015

Accepted: : 173

#258: C1942huangjiaxu

Accepted: : 172

#259: eyiigjkn

Accepted: : 171

#259: ucup-team1400

Accepted: : 171

#261: ucup-team5885

Accepted: : 170

#262: caijianhong

Accepted: : 169

#262: makrav

Accepted: : 169

#262: ucup-team3774

Accepted: : 169

#265: willow

Accepted: : 167

#265: yuanruiqi

Accepted: : 167

#267: ucup-team3627

Accepted: : 165

#267: ucup-team3670

Accepted: : 165

#267: wcyQwQ

Accepted: : 165

#267: Wuyanru

Accepted: : 165
Celeste 好玩

#271: Appleblue17

Accepted: : 164

#271: gg_gong

Accepted: : 164
Who am I? Why am I here?

#271: ucup-team118

Accepted: : 164

#274: QBF

Accepted: : 163

#274: ucup-team1332

Accepted: : 163

#274: wdnmdwrnmmp

Accepted: : 163

#277: gyydp123_LIM

Accepted: : 162
And in that light I find deliverance

#277: pengpeng_fudan

Accepted: : 162

#277: ucup-team1137

Accepted: : 162

#280: huaxiamengjin

Accepted: : 161

#280: NKheyuxiang

Accepted: : 161

#280: ucup-team3734

Accepted: : 161

#280: ucup-team456

Accepted: : 161

#280: ucup-team660

Accepted: : 161

#280: xyj

Accepted: : 161

#286: cooluo

Accepted: : 160
π⁴+π⁵≈e⁶ | Per Aspera Ad Astra

#286: real_sigma_team

Accepted: : 160

#286: Yarema

Accepted: : 160

#286: zlxFTH

Accepted: : 160

#290: lgvc

Accepted: : 159

#290: Sa3tElSefr

Accepted: : 159
leh

#292: lonelywolf

Accepted: : 158

#292: ucup-team3584

Accepted: : 158

#294: jiangzhihui

Accepted: : 157

#294: Misuki

Accepted: : 157
$E[X] = \sum\limits_{k \ge 0} Pr[X > k]$

#294: tzl_Dedicatus545

Accepted: : 157
忙碌着 无为着 继续

#294: ucup-team017

Accepted: : 157

#298: ucup-team3746

Accepted: : 156

#299: liuhengxi

Accepted: : 155

#299: Purslane

Accepted: : 155
梦的边陲 风吹不灭 从不感疲惫
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11