QOJ.ac

QOJ

Time Limit: 4 s Memory Limit: 512 MB Total points: 100

#8628. 最大连续和

Statistics

题目描述

给定长度为$N$的序列$a_1, a_2, ..., a_N$,和长度为$M$的序列$b_1, b_2, ..., b_M$。 接着你需要构造出一个长度为$M$的整数序列$c_1, c_2, ..., c_M$,满足:

  • $0 \le c_n \le N$。
  • 每个非$0$元素在$c$中出现次数不能超过$1$次。

构造完序列$c$后,你将依序做以下的操作:

  • 若$c_i\neq 0$ ,将$a_{c_i}$替换成$b_i$。

试求在经由你构造的序列c替换完以后,序列$a$的最大连续和($\max\limits_{1 \le l \le r \le N} (\sum_{i = l}^{r} a_i)$)能多大。

输入格式

输入的第一行包含两个整数$N$和$M$,代表序列$a$和序列$b$的长度。

接下来的一行包含$N$整数$a_1, a_2, ..., a_N$。

接下来的一行包含$M$整数$b_1, b_2, ..., b_M$。

输出格式

输出一行一个整数表示经由你构造的序列c替换完以后,序列$a$的最大连续和能多大。

样例

输入

3 1
3 -6 3
-2

输出

4

解释

令 $c_1=2$ ,操作时 $a_{c_1}(a_2)$ 被替换为 $-2$ 。

$\max\limits_{1 \le l \le r \le N} (\sum_{i = l}^{r} a_i)=\sum_{i = 1}^{3} a_i=3+(-2)+3=4$

子任务

  • $1 \le N \le 10^5$
  • $0 \le M \le 10^5$
  • $-10^9 \le a_i, b_i \le 10^9$

前20%的分数满足 $N, M \le 500$。

其余有30%的分数满足 $N, M \le 2000$。

Discussions

About Discussions

The discussion section is only for posting: Editorials, General Discussions (problem-solving strategies, alternative approaches), and Off-topic conversations.

This is NOT for reporting issues! If you want to report bugs or errors, please use the Issues section below.

Open Discussions 0
No discussions in this category.

Issues

About Issues

If you find any issues with the problem (statement, scoring, time/memory limits, test cases, etc.), you may submit an issue here. A problem moderator will review your issue.

Guidelines:

  1. This is not a place to publish discussions, editorials, or requests to debug your code. Issues are only visible to you and problem moderators.
  2. Do not submit duplicated issues. Submitting multiple issues may cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
Active Issues 0
No issues in this category.
Closed/Resolved Issues 0
No issues in this category.