QOJ.ac

QOJ

Time Limit: 1 s Memory Limit: 512 MB Total points: 100

#5089. 环覆盖

统计

形式化题意:给定一张 $n$ 个点,$m$ 条边的简单无向图,对每个 $i\in [0,m]$,计算它只保留 $i$ 条边,使得剩下的图是一个可环覆盖图的方案数。可环覆盖的定义是,可以将边集划分成若干个子集,使得每个子集都形成一个环。

答案对 $10^9+7$ 取模。

输入格式

第一行两个整数 $n,m$。

接下来 $m$ 行,每行两个数 $u,v$,代表一条边。

输出格式

一行 $m+1$ 个整数,第 $k$ 个表示题面中 $i=k-1$ 时的答案。

样例输入1

3 3
1 2
1 3
2 3

样例输出1

1 0 0 1

样例1解释

只有保留 0 条边和保留 3 条边的两个方案是合法的。

样例输入2

6 10
1 2
1 3
1 4
1 5
1 6
2 4
3 4
3 5
4 5
4 6

样例输出2

1 0 0 6 8 4 4 6 3 0 0

数据范围

对于所有数据,$1\le n\le 25,0\le m\le \dfrac{n(n-1)}{2}$。

Subtask 1(5pts):$n,m\le 20$。

Subtask 2(15pts):$n\le 20,m\le 40$。依赖 Sub 1。

Subtask 3(15pts):$n=25,m=45$,图连通。

Subtask 4(30pts):$n\le 20$。依赖 Sub 2。

Subtask 5(35pts):无特殊限制。依赖 Sub 4。

Discussions

About Discussions

The discussion section is only for posting: Editorials, General Discussions (problem-solving strategies, alternative approaches), and Off-topic conversations.

This is NOT for reporting issues! If you want to report bugs or errors, please use the Issues section below.

Open Discussions 0
No discussions in this category.

Issues

About Issues

If you find any issues with the problem (statement, scoring, time/memory limits, test cases, etc.), you may submit an issue here. A problem moderator will review your issue.

Guidelines:

  1. This is not a place to publish discussions, editorials, or requests to debug your code. Issues are only visible to you and problem moderators.
  2. Do not submit duplicated issues. Submitting multiple issues may cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
Active Issues 0
No issues in this category.
Closed/Resolved Issues 0
No issues in this category.