QOJ.ac

QOJ

Time Limit: 2 s Memory Limit: 512 MB Total points: 100

#5031. 核

Statistics

题目背景

$shik$ 搞核工程去了。

题目描述

$127$ 想要考考你解方程的能力。

你有这样一个方程:$AB \equiv A \pmod q$,其中 $q$ 为素数,且满足 $A,B$ 为 $n$ 阶方阵,并且矩阵中的元素 $\in \{0,1,2,...,q−1\}$(之后的所有矩阵也要满足这一点)。

方阵的同余 $S \equiv T \pmod p$ 被定义为 $\forall i,j \in \{1,2,...,n\}$,$S_{i,j} \equiv T_{i,j} \pmod p$,即对应位置同余。

对于这样的给定的 $B$,记 $f(B)$ 表示使方程同余的所有 $A$ 的数量。

但是给定一个 $B$ 求解 $f(B)$太简单了,所以你需要对满足 $|B| \ne 0$(或者说可逆,非奇异)的 $n$ 阶方阵求解 $3^{f(B)}$ 的和。

并且由于这个和太大了,你需要将这个和对一个给定的数 $mod$ 取模。

注意,只有 $n,q,mod$ 是给定的。

输入格式

第一行包含三个用空格隔开的正整数 $n,q,mod$。

输出格式

一行一个非负整数代表题面中的和对 $mod$ 取模后的答案。

样例数据

样例 1 输入

2 2 1000000007

样例 1 输出

43046970

样例 1 解释

对于矩阵 $B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, 满足条件的 $A$ 有: $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, 共 4 个

对于矩阵 $B=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$, 满足条件的 $A$ 有: $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, 共 1 个

对于矩阵 $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, 满足条件的 $A$ 为所有的 $A$ 共 16 个

对于矩阵 $B=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$, 满足条件的 $A$ 有: $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$, 共 4 个

对于矩阵 $B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, 满足条件的 $A$ 有: $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)$, 共 4 个

对于矩阵 $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$, 满足条件的 $A$ 有: $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, 共 1 个

故答案为 $3^4+3^1+3^{16}+3^4+3^4+3^1 \equiv 43046970\left(\bmod 10^9+7\right)$

样例 2 输入

100 127 998244353

样例 2 输出

881381862

样例解释二

的确如此

限制与约定

对于所有测试点,有 $10^8 \le mod \le 10^9+7$,$2 \leq q < mod$,且满足 $q,mod$ 为素数

本题采用子任务捆绑测试,子任务描述及具体分值如下:

子任务 分值 $n$ $q$ $mod$
$1$ $10$ $\le 3$ $\le 3$ $ $
$2$ $20$ $\le 10^2$ $ $
$3$ $10$ $\le 3 \cdot 10^3$
$4$ $20$ $\le 10^6$ $=998\,244\,353$
$5$ $10$ $\le 10^7$ $=q+2$
$6$ $30$ $ $

Discussions

About Discussions

The discussion section is only for posting: Editorials, General Discussions (problem-solving strategies, alternative approaches), and Off-topic conversations.

This is NOT for reporting issues! If you want to report bugs or errors, please use the Issues section below.

Open Discussions 0
No discussions in this category.

Issues

About Issues

If you find any issues with the problem (statement, scoring, time/memory limits, test cases, etc.), you may submit an issue here. A problem moderator will review your issue.

Guidelines:

  1. This is not a place to publish discussions, editorials, or requests to debug your code. Issues are only visible to you and problem moderators.
  2. Do not submit duplicated issues. Submitting multiple issues may cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
Active Issues 0
No issues in this category.
Closed/Resolved Issues 0
No issues in this category.