QOJ.ac

QOJ

Time Limit: 1 s Memory Limit: 512 MB Total points: 100

#1996. Exercise

الإحصائيات

Farmer John has come up with a new morning exercise routine for the cows (again)!

As before, Farmer John's $N$ cows ($1\le N\le 7500$) are standing in a line. The $i$-th cow from the left has label $i$ for each $1\le i\le N$. He tells them to repeat the following step until the cows are in the same order as when they started.

  • Given a permutation $A$ of length $N$, the cows change their order such that the $i$-th cow from the left before the change is $A_i$-th from the left after the change.

For example, if $A=(1,2,3,4,5)$ then the cows perform one step and immediately return to the same order. If $A=(2,3,1,5,4)$, then the cows perform six steps before returning to the original order. The order of the cows from left to right after each step is as follows:

  • 0 steps: $(1,2,3,4,5)$
  • 1 step: $(3,1,2,5,4)$
  • 2 steps: $(2,3,1,4,5)$
  • 3 steps: $(1,2,3,5,4)$
  • 4 steps: $(3,1,2,4,5)$
  • 5 steps: $(2,3,1,5,4)$
  • 6 steps: $(1,2,3,4,5)$

Compute the product of the numbers of steps needed over all $N!$ possible permutations $A$ of length $N$.

As this number may be very large, output the answer modulo $M$ ($10^8\le M\le 10^9+7$, $M$ is prime).

Contestants using C++ may find the following code from KACTL helpful. Known as the Barrett reduction, it allows you to compute $a \% b$ several times faster than usual, where $b>1$ is constant but not known at compile time. (we are not aware of such an optimization for Java, unfortunately).

#include <bits/stdc++.h>
using namespace std;

typedef unsigned long long ull;
typedef __uint128_t L;
struct FastMod {
    ull b, m;
    FastMod(ull b) : b(b), m(ull((L(1) << 64) / b)) {}
    ull reduce(ull a) {
        ull q = (ull)((L(m) * a) >> 64);
        ull r = a - q * b; // can be proven that 0 <= r < 2*b
        return r >= b ? r - b : r;
    }
};
FastMod F(2);

int main() {
    int M = 1000000007; F = FastMod(M);
    ull x = 10ULL*M+3; 
    cout <<; x << " " << F.reduce(x) << "\n"; // 10000000073 3
}

INPUT FORMAT (file exercise.in):

The first line contains $N$ and $M$.

OUTPUT FORMAT (file exercise.out):

A single integer.

SAMPLE INPUT:

5 1000000007

SAMPLE OUTPUT:

369329541

For each $1\le i\le N$, the $i$-th element of the following array is the number of permutations that cause the cows to take $i$ steps: $[1,25,20,30,24,20].$ The answer is $1^1\cdot 2^{25}\cdot 3^{20}\cdot 4^{30}\cdot 5^{24}\cdot 6^{20}\equiv 369329541\pmod{10^9+7}$.

Note: This problem has an expanded memory limit of 512 MB.

SCORING:

  • Test case 2 satisfies $N=8$.
  • Test cases 3-5 satisfy $N\le 50$.
  • Test cases 6-8 satisfy $N\le 500$.
  • Test cases 9-12 satisfy $N\le 3000$.
  • Test cases 13-16 satisfy no additional constraints.

Problem credits: Benjamin Qi

Discussions

About Discussions

The discussion section is only for posting: Editorials, General Discussions (problem-solving strategies, alternative approaches), and Off-topic conversations.

This is NOT for reporting issues! If you want to report bugs or errors, please use the Issues section below.

Open Discussions 0
No discussions in this category.

Issues

About Issues

If you find any issues with the problem (statement, scoring, time/memory limits, test cases, etc.), you may submit an issue here. A problem moderator will review your issue.

Guidelines:

  1. This is not a place to publish discussions, editorials, or requests to debug your code. Issues are only visible to you and problem moderators.
  2. Do not submit duplicated issues. Submitting multiple issues may cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
Active Issues 0
No issues in this category.
Closed/Resolved Issues 0
No issues in this category.