QOJ.ac

QOJ

Time Limit: 1 s Memory Limit: 512 MB Total points: 100

#12387. 老司机

统计

四环路上行人稀,常有车神较高低。

如今车道依旧在,不见当年老司机。

B 君心情不好的时候,喜欢去四环路上飙车。看着窗外飞驰而过的景色,B 君想到了过去的 R 君和 G 君;想到了现在的 YJQ 和 FLZ;想到了宇宙之浩渺,时空之无限;也想到了这道题。

输入 $n, X, Y, Z$,保证 $X$ 是 $2$ 的整数次幂,$Y$是 $3$ 的整数次幂,$Z$ 是 $5$ 的整数次幂,同时 $1 \leq n \leq 1000, 1 \leq XYZ \leq 2000$。

输入四个长度为 $n$ 的数组 $\{a_i\}, \{b_i\}, \{c_i\}, \{r_i\}(0 \leq a_i, b_i, c_i, r_i \leq 1000000000)$

对于 $(u, v, w)$ 求有多少组解 $\{x_i\}, \{y_i\}, \{z_i\}$

满足对于所有的 $i$,有 $a_i \le x_i, b_i \le y_i, c_i \le z_i, r_i \ge x_i - a_i + y_i - b_i + z_i - c_i$

并且

$$\left(\sum_{i=1}^{n} x_i \right)\bmod X = u$$

$$\left( \sum_{i=1}^{n} y_i \right) \bmod Y = v$$

$$\left(\sum_{i=1}^{n} z_i \right)\bmod Z = w$$

设解的个数为 $F(u, v, w)$

输出

$$\mathop{\mathrm{xor}} \limits_{\substack{0 \leq u < X \\ 0 \leq v < Y \\ 0 \leq w < Z}} ((u Y Z + v Z + w) \times (F(u, v, w) \bmod 466560001))$$

输入格式

输入第一行 $n, X, Y, Z$。

接下来 $n$ 行,第 $i$ 行四个整数 $a_i, b_i, c_i, r_i$。

输出格式

一行一个整数表示答案。

样例数据

样例 1 输入

3 2 3 1
0 0 0 1
0 0 0 2
0 0 0 3

样例 1 输出

573

样例 2 输入

3 2 3 5
0 0 0 1
0 0 0 2
0 0 0 3

样例 2 输出

253

Discussions

About Discussions

The discussion section is only for posting: Editorials, General Discussions (problem-solving strategies, alternative approaches), and Off-topic conversations.

This is NOT for reporting issues! If you want to report bugs or errors, please use the Issues section below.

Open Discussions 0
No discussions in this category.

Issues

About Issues

If you find any issues with the problem (statement, scoring, time/memory limits, test cases, etc.), you may submit an issue here. A problem moderator will review your issue.

Guidelines:

  1. This is not a place to publish discussions, editorials, or requests to debug your code. Issues are only visible to you and problem moderators.
  2. Do not submit duplicated issues. Submitting multiple issues may cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
Active Issues 0
No issues in this category.
Closed/Resolved Issues 0
No issues in this category.